As the worm turns: New twists in behavioral association theories

Physicists have developed a dynamical model of animal behavior that may explain some mysteries surrounding associative learning going back to Pavlov’s dogs. The Proceedings of the National Academy of Sciences (PNAS) published the findings, based on experiments on a common laboratory organism, the roundworm C. elegans

“We showed how learned associations are not mediated by just the strength of an association, but by multiple, nearly independent pathways — at least in the worms,” says Ilya Nemenman, an Emory professor of physics and biology whose lab led the theoretical analyses for the paper. “We expect that similar results will hold for larger animals as well, including maybe in humans.”

“Our model is dynamical and multi-dimensional,” adds William Ryu, an associate professor of physics at the Donnelly Centre at the University of Toronto, whose lab led the experimental work. “It explains why this example of associative learning is not as simple as forming a single positive memory. Instead, it’s a continuous interplay between positive and negative associations that are happening at the same time.”

First author of the paper is Ahmed Roman, who worked on the project as an Emory graduate student and is now a postdoctoral fellow at the Broad Institute. Konstaintine Palanski, a former graduate student at the University of Toronto, is also an author.

Read more in the Emory News story!

Leave a Reply